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Abstract In this paper we will develop an explicit fourth algebraic order four-step
method with phase-lag and its first and second derivatives vanished. The comparative
error and the stability analysis of the above mentioned paper is also presented. The new
obtained method is applied on the resonance problem of the Schrödinger equationIn
order in order to examine its efficiency. The theoretical and the computational results
shown that the new obtained method is more efficient than other well known methods
for the numerical solution of the Schrödinger equation and related initial-value or
boundary-value problems with periodic and/or oscillating solutions.
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1 Introduction

In the present paper the approximate solution of special second-order initial-value
problems of the form (see [1] for details)

q ′′(x) = f (x, q), q(x0) = y0 and q ′(x0) = y′
0 (1)

with a periodical and/or oscillatory solutions is studied. For this kind of problems,
the main characteristic of the mathematical models is that the system of ordinary
differential equations which describe the above models are of second order in which
the first derivative y′ does not appear explicitly (see [2–119] and references therein).

2 Analysis of the phase-lag for symmetric multistep methods

Multistep methods of the form

m∑

i=0

ci qn+i = h2
m∑

i=0

bi f (xn+i , qn+i ) (2)

can be used for the numerical solution of the above mentioned initial value problem
(1). In the formula (2), m means the number of steps over the equally spaced intervals
{xi }m

i=0 ∈ [a, b] and h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of
integration.

If the method is symmetric then ci = cm−i and bi = bm−i , i = 0(1)�m
2 �.

The Multistep Method (2) is associated with the operator

L(x) =
m∑

i=0

ci u(x + i h) − h2
m∑

i=0

bi u′′(x + i h) (3)

where u ∈ C2 (see for details [15]).

Definition 1 [22] The multistep method (2) is called algebraic of order p if the associ-
ated linear operator L vanishes for any linear combination of the linearly independent
functions 1, x, x2, . . . , x p+1.

If we apply s symmetric 2 k-step method, that is for i = −k(1)k, to the scalar test
equation

y′′ = −ω2 y (4)

the following difference equation is obtained:

Ak(v) yn+k + · · · + A1(v) yn+1 + A0(v) yn

+A1(v) yn−1 + · · · + Ak(v) yn−k = 0 (5)

where v = ω h, h is the step length and A j (v) j = 0(1)k are polynomials of v.
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The characteristic equation :

Ak(v) λk + · · · + A1(v) λ + A0(v)

+A1(v) λ−1 + · · · + Ak(v) λ−k = 0 (6)

is associated with (5).
Lambert and Watson [15] introduced the following definition:

Definition 2 A symmetric 2 k-step method with characteristic equation given by (6)
is said to have an interval of periodicity (0, v2

0) if, for all v ∈ (0, v2
0), the roots

λi , i = 1(1)2 m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2 m (7)

where θ(v) is a real function of v.

Definition 3 [25,26] For any method corresponding to the characteristic equation (6)
the phase-lag is defined as the leading term in the expansion of

t = v − θ(v) (8)

Then if the quantity t = O(vr+1) as v → ∞, the order of phase-lag is r .

Definition 4 [23] Phase-fitted is called a method for which the phase-lag vanishes

Theorem 1 [25] The symmetric 2 k-step method with characteristic equation given
by (6) has phase-lag order r and phase-lag constant c given by

− cvr+2 + O(vr+4) = 2 Ak(v) cos(k v) + · · · + 2 A j (v) cos( j v) + · · · + A0(v)

2 k2 Ak(v) + · · · + 2 j2 A j (v) + · · · + 2 A1(v)

(9)

The formula proposed from the above theorem gives us a direct method to calculate
the phase-lag of any symmetric 2 k- step method.

Remark 1 For the specific case of the symmetric four-step method (i.e. for k = 2),
and based on the above theorem, we conclude that a symmetric four-step method has
phase-lag order p and phase-lag constant c given which can be computed by the direct
formula:

− cvr+2 + O(vr+4) = 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(10)
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3 The family of explicit four-step methods with vanished phase-lag and its first
and second derivatives

We write the explicit symmetric 2 m-step method as :

qn+m +
m−1∑

i=0

ci (qn+i + qn−i ) + qn−m

= h2
m−1∑

i=1

bi
[

f (xn+i , qn+i ) + f (xn−i , qn−i )
] + b0 f (xn, qn) (11)

From the form (11) with m = 2 we get the following form of the explicit symmetric
four-step methods [22]:

qn+2 + c1 (qn+1 + qn−1) + c0 qn + qn−2 = h2
[

b1 ( fn+1 + fn−1) + b0 fn

]
(12)

where fi = y′′ (xi , qi ) , i = n − 1(1)n + 1.
Considering (12), we choose:

c1 = − 1

10
(13)

Remark 2 The above choice for the free parameter c1 is based on the paper [22]. In
this study it has been proved that the above value of c1 gives for the method (12) the
higher accuracy.

Requesting the above method to have the phase-lag and its first and second deriva-
tives vanished, the following system of equations is produced:

Phase−Lag(PL) = T1
39
5 + 2 v2b1

= 0

First Derivative of PL = − T2
(
10 v2b1 + 39

)2 = 0

Second Derivative of PL = − T3
(
10 v2b1 + 39

)3 = 0 (14)

where

T1 = 2 cos (2 v) + 2

(
− 1

10
+ v2b1

)
cos (v) + v2b0 + c0

T2 = 100 sin (v) v4b1
2 + 400 sin (v) cos (v) v2b1 + 400 v b1 (cos (v))2

+ 380 sin (v) v2b1 − 800 v b1 cos (v) + 100 v b1c0 + 1560 sin (v) cos (v)

− 390 v b0 − 200 v b1 − 39 sin (v)
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T3 = 1000 cos (v) v6b1
3 + 8000 (cos (v))2 v4b1

2 − 16000 sin (v) cos (v) v3b1
2

+ 7700 cos (v) v4b1
2 − 12000 (cos (v))2 v2b1

2 + 16000 sin (v) v3b1
2

− 4000 v4b1
2 + 62400 (cos (v))2 v2b1 + 24000 cos (v) v2b1

2 − 3000 v2b1
2c0

− 62400 sin (v) cos (v) v b1+14430 cos (v) v2b1+11700 v2b0b1 + 6000 v2b1
2

+ 15600 (cos (v))2 b1 + 62400 v b1 sin (v) − 31200 v2b1 + 121680 (cos (v))2

− 31200 b1 cos (v) + 3900 b1c0 − 1521 cos (v)−15210 b0 − 7800 b1 − 60840

Solving the above system of equations, we obtain the coefficients of the new proposed
method:

b0 = T4

10 cos (v) v3 + 30 v2 sin (v)
, b1 = T5

10 cos (v) v3 + 30 v2 sin (v)

c0 = T6

10 v cos (v) + 30 sin (v)
(15)

where

T4 = 30 v2 sin (v) − 10 v2 sin (3 v) + v cos (2 v)

+ 80 v cos (v) − 20 sin (v) + sin (2 v) − 20 sin (3 v) − 3 v

T5 = − 40 v cos (2 v) + v cos (v) + 20 sin (2 v) − sin (v)

T6 = − 30 v2 sin (v) + 10 v2 sin (3 v) − v cos (2 v)

− 50 v cos (v) + 30 v cos (3 v) + 30 sin (v)

+ 3 sin (2 v) − 30 sin (3 v) + 3 v

The following Taylor series expansions should be used in the cases that the formulae
given by (15) are subject to heavy cancellations for some values of |v| :

b0 = 5

4
+ 161

400
v2 − 1403

6720
v4 + 140143

6048000
v6

− 55771

29568000
v8 + 1918751

111767040000
v10 − 166408997

17435658240000
v12

− 22339736197

17784371404800000
v14 − 1218700512811

5676771352412160000
v16

− 665139026325233

18733345462960128000000
v18 + · · ·

b1 = 53

40
− 161

800
v2 + 253

67200
v4 − 8353

12096000
v6 − 1767

19712000
v8

− 307801

20321280000
v10 − 87506899

34871316480000
v12

− 2114562269

5081248972800000
v14 − 3917589452563

56767713524121600000
v16

− 428777309305897

37466690925920256000000
v18 + · · ·
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Fig. 1 Behavior of the coefficients of the new proposed method given by (15) for several values of v = ω h

c0 = −9

5
+ 161

2400
v6 − 23

2240
v8 + 269

268800
v10

− 23789

1596672000
v12 + 1126793

223534080000
v14 + 16463

26417664000
v16

+ 11494958767

106706228428800000
v18 + · · · (16)

The behavior of the coefficients is given in the following Fig. 1.
The new obtained method (12) (mentioned as Four StepI ) with the coefficients

given by (15)–(16) has a local truncation error which is given by:

LTEFour Step New = 161 h6

2400

(
q(6)

n +3 ω2 q(4)
n +3 ω4 q(2)

n +ω6 qn

)
+O

(
h8

)
(17)
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4 Comparative error analysis

We will investigate the following cases:

4.1 Classical method (i.e. the method (12) with constant coefficients)

LTEC L = 161 h6

2400
q(6)

n + O
(

h8
)

(18)

4.2 The method with vanished phase-lag produced in [22]

LT EMeth AnasSim = 161 h6

2400

(
q(6)

n + ω2 q(4)
n

)
+ O

(
h8

)
(19)

4.3 The method with vanished phase-lag and its first derivative produced in [50]

LTEFour StepI = 161 h6

2400

(
q(6)

n + 2 ω2 q(4)
n + ω4 q(2)

n

)
+ O

(
h8

)
(20)

4.4 The method with vanished phase-lag and its first and second derivatives
developed in Sect. 3

LTEFour StepI I = 161 h6

2400

(
q(6)

n +3 ω2 q(4)
n +3 ω4 q(2)

n +ω6 qn

)
+ O

(
h8

)
(21)

The procedure contains the following stages

– The radial time independent Schrödinger equation is of the form

q ′′ (x) = f (x) q (x) (22)

– Based on the paper of Ixaru and Rizea [84], the function f (x) can be written in
the form:

f (x) = g(x) + G (23)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .

– We express the derivatives q(i)
n , i = 2, 3, 4, . . . , which are terms of the local

truncation error formulae, in terms of the Eq. (23). The expressions are presented
as polynomials of G
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– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae

We present the derivatives which presented in the formulae of the Local Truncation
Errors:

q(2)
n = (V (x) − Vc + G) q(x)

q(3)
n =

(
d

dx
g (x)

)
q (x) + (g (x) + G)

d

dx
q (x)

q(4)
n =

(
d2

dx2 g (x)

)
q (x) + 2

(
d

dx
g (x)

)
d

dx
q (x)

+ (g (x) + G)2 q (x)

q(5)
n =

(
d3

dx3 g (x)

)
q (x) + 3

(
d2

dx2 g (x)

)
d

dx
q (x)

+ 4 (g (x) + G) q (x)
d

dx
g (x) + (g (x) + G)2 d

dx
q (x)

q(6)
n =

(
d4

dx4 g (x)

)
q (x) + 4

(
d3

dx3 g (x)

)
d

dx
q (x)

+ 7 (g (x) + G) q (x)
d2

dx2 g (x) + 4

(
d

dx
g (x)

)2

q (x)

+ 6 (g (x) + G)

(
d

dx
q (x)

)
d

dx
g (x)

+ (g (x) + G)3 q (x)

q(7)
n =

(
d5

dx5
g (x)

)
q (x) + 5

(
d4

dx4 g (x)

)
d

dx
q (x)

+ 11 (g (x) + G) q (x)
d3

dx3 g (x) + 15

(
d

dx
g (x)

)
q (x)

d2

dx2 g (x) + 13 (g (x) + G)

(
d

dx
q (x)

)
d2

dx2 g (x)

+ 10

(
d

dx
g (x)

)2 d

dx
q (x) + 9 (g (x) + G)2 q (x)

× d

dx
g (x) + (g (x) + G)3 d

dx
q (x)

q(8)
n =

(
d6

dx6 g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 16 (g (x) + G) q (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
q (x)

× d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3 g (x)
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+ 15

(
d2

dx2 g (x)

)2

q (x) + 48

(
d

dx
g (x)

)

(
d

dx
q (x)

)
d2

dx2 g (x) + 22 (g (x) + G)2 q (x)

× d2

dx2 g (x) + 28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
q (x)

)
d

dx
g (x)

+ (g (x) + G)4 q (x) . . .

1. We study two cases in terms of the value of E within the Local Truncation Error
analysis :
a) The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the

free terms of the polynomials in G are considered only. Thus, for these values
of G, the methods are of comparable accuracy. This is because the free terms
of the polynomials in G are the same for the cases of the classical method and
of the methods with vanished the phase-lag and its derivatives.

b) G >> 0 or G << 0. Then |G| is a large number.
2. Finally we compute the asymptotic expansions of the Local Truncation Errors

The following asymptotic expansions of the Local Truncation Errors are obtained
based on the analysis presented above :

4.5 Classical method

LTEC L = h6
(

161

2400
q (x) G3 + · · ·

)
+ O

(
h8

)
(24)

4.6 The method with vanished phase-lag produced in [22]

LTEMeth AnasSim = h6
(

161

2400
g (x) q (x) G2 + · · ·

)
+ O

(
h8

)
(25)

4.7 The method with vanished phase-lag and its first derivative produced in [50]

LTEFour StepI = h6
[(

161

2400
(g (x))2 q (x) + 161

1200

(
d

dx
g (x)

)
d

dx
q (x)

+161

480

(
d2

dx2 g (x)

)
q (x)

)
G + · · ·

]
+ O

(
h8

)
(26)
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4.8 The method with vanished phase-lag and its first and second derivatives
developed in Sect. 3

LT EFour StepI I = h6
(

161

600

(
d2

dx2 g (x)

)
q (x) G + · · ·

)
+ O

(
h8

)
(27)

From the above equations we have the following theorem:

Theorem 2 For the Classical Four-Step Explicit Method, the error increases as the
third power of G. For the Four-Step Explicit Phase-Fitted Method developed in [22] ,
the error increases as the second power of G. For the Four-Step Explicit Method with
Vanished Phase-lag and its First Derivative obtained in [50], the error increases as the
first power of G. Finally, for the Four-Step Explicit Method with Vanished Phase-lag
and its First and Second Derivatives produced in Sect. 3, the error increases as the
first power of G but it has lower coefficients than the method developed in [50]. So,
for the numerical solution of the time independent radial Schrödinger equation the the
Methods developed in [50] and the New Proposed Method with Vanished Phase-Lag
and its First and Second Derivatives are the most efficient from theoretical point of
view, especially for large values of |G| = |Vc − E |.

5 Stability analysis

In order to investigate the stability of the new developed methods, we apply them to
the scalar test equation:

y′′ = −φ2 y. (28)

This leads to the following difference equation:

A2 (s, v) (yn+2 + yn−2) + A1 (s, v) (yn+1 + yn−1) + A0 (s, v) yn = 0 (29)

where

A2 (s, v) = 1, A1 (s, v) = − 1

10
+ T7

10 cos (v) v3 + 30 v2 sin (v)

A0 (s, v) = T8

10 v cos (v) + 30 sin (v)
(30)

where

T7 = s2 (−40 v cos (2 v) + v cos (v) + 20 sin (2 v) − sin (v))

T8 = −30 v2 sin (v) + 10 v2 sin (3 v) − v cos (2 v) − 50 v cos (v)

+30 v cos (3 v) + 30 sin (v) + 3 sin (2 v) − 30 sin (3 v) + 3 v

and s = φ h.
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Fig. 2 s–v plane of the the new obtained method with vanished phase-lag and its first and second derivatives

Remark 3 The frequency of the scalar test Eq. (4), ω, is not equal with The frequency
of the scalar test Eq. (28), φ, i.e. ω 
= φ.

We have the following definitions:

Definition 5 (see [15]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 6 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 2 we present the s–w plane for the method developed in this paper.

Remark 4 A shadowed region declares the s–v area where the method is stable, while
a white area declares the area where the method is unstable.

Remark 5 There are mathematical models where it is appropriate to observe the sur-
roundings of the first diagonal of the s–v plane. One category consists mathematical
models where in order to apply the new obtained methods the frequency of the phase
fitting must be equal to the frequency of the scalar test equation. Many problems in

1 Where S is a set of distinct points
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sciences and engineering belong to this category of mathematical models (for example
the time independent Schrödinger equation).

Based on the above mentioned remark, the category of mathematical models where
the frequency of the scalar test equation is equal with the frequency of phase fitting is
now investigated, i.e. we study the case where s = v (i.e. see the surroundings of the
first diagonal of the s–v plane). Based on this investigation we produce the result that
the interval of periodicity of the new method obtained in Sect. 3 are equal to: (0, 4.1).

The above investigation leads to the following theorem:

Theorem 3 The method produce in Sect. 3:

– is of fourth algebraic order,
– has the phase-lag and its first and second derivatives equal to zero
– has an interval of periodicity equals to: (0, 4.1) when the frequency of the scalar

test equation is equal with the frequency of phase fitting

6 Numerical results

We will study the efficiency of the new obtained explicit four-step method applying
it on the numerical solution the radial time-independent Schrödinger equation (see
[120–122]).

The radial time independent Schrödinger equation has a mathematics model given
by :

y′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (31)

is a boundary value problem which has the following boundary conditions :

y(0) = 0 (32)

and another boundary condition, for large values of r , determined by physical prop-
erties of the specific problem.

Below we give some definitions of the functions, quantities and parameters for the
above mathematical model (31) :

1. The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

2. The quantity k2 is a real number denoting the energy,
3. The quantity l is a given integer representing the angular momentum,
4. V is a given function which denotes the potential.

The value of parameter (frequency) ω must be determined for the new obtained
method since it is frequency dependent method, in order to be applied to any problem
(see for example the notation after (4) and the formulae in Sect. 3). The parameter ω

for the case of the one-dimensional Schrödinger equation is given by (for l = 0) :

ω =
√

|V (r) − k2| = √|V (r) − E | (33)

where V (r) is the potential and E is the energy.
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6.1 Woods–Saxon potential

The well known Woods–Saxon potential is used for the purpose of our numerical tests.
We can write it with the form:

V (r) = u0

1 + q
− u0 q

a (1 + q)2 (34)

with q = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods–Saxon potential is shown in Fig. 3.
Studying some potentials, such as the Woods–Saxon potential, one can finds some

basic points in their form and can uses these basic points for discrete approximation
of the the parameter ω (see for details [110]).

Based on the investigations mentioned above and for the purpose of our tests, we
choose ω as follows (see for details [123] and [84]):

φ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(35)

For example, in the point of the integration region r = 6.5 − h, the value of φ is
equal to:

√−37.5 + E . So, w = φ h = √−37.5 + E h. In the point of the integration
region r = 6.5 − 3 h, the value of φ is equal to:

√−50 + E , etc.

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r
The Woods-Saxon Potential

Fig. 3 The Woods–Saxon potential
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6.2 Radial Schrödinger equation: the resonance problem

For the study of the efficiency of the new obtained method, we will study the approx-
imate solution of the one-dimensional time independent Schrödinger equation (31)
using as potential the Woods–Saxon potential (34). The strategy for the approximate
solution of this problem consists the conversion of the infinite interval of integration
(which is the true interval of integration) to a finite one. For the purposes of our numer-
ical experiments we choose the integration interval r ∈ [0, 15]. We consider Eq. (31)
in a rather large domain of energies, i.e., E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

y′′ (r) +
(

k2 − l(l + 1)

r2

)
y (r) = 0 (36)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respectively.
Thus, the solution of Eq. (31) (when r → ∞), has the asymptotic form

y (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(37)

where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(38)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
y j , j = 0, (1)3 before starting a four-step method. From the initial condition, we
obtain y0. The values yi , i = 1(1)3 are obtained by using high order Runge-Kutta-
Nyström methods(see [117] and [118]). With these starting values, we evaluate at r2
of the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

y(0) = 0, y(r) = cos
(√

Er
)

for large r. (39)

We compute the approximate positive eigenenergies of the Woods–Saxon resonance
problem using:
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– The eighth order multi-step method developed by Quinlan and Tremaine [16], which
is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [16], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [16],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag [29],
which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [85], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with minimal
phase-lag [28], which is indicated as Method MCR6

– The classical form of the fourth algebraic order four-step method developed in
Sect. 3, which is indicated as Method NMCL2.

– The Phase-Fitted Method (Case 1) developed in [22], which is indicated as Method
NMPF1

– The Phase-Fitted Method (Case 2) developed in [22], which is indicated as Method
NMPF2

– The Four-Step Method with vanished phase-lag and its first derivative (Case 2)
developed in [50], which is indicated as Method NMC2

– The Four-Step Method with vanished phase-lag and its first derivative (Case 1)
developed in [50], which is indicated as Method NMC1

– The New Obtained Method developed in Sect. 3, which is indicated as Method
NMPFD12

The numerically calculated eigenenergies are compared with reference values3. In
Figs. 4 and 5, we present the maximum absolute error Errmax = |log10 (Err) | where

Err = |Ecalculated − Eaccurate| (40)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

7 Conclusions

In the present paper we developed an explicit four-step method. This method was based
on the family of methods studied by Anastassi and Simos [22]. The investigation of
the vanishing of the phase-lag and its first and second derivative of a method of the
above mentioned family of the methods was the aim and scope of this paper. For
the new obtained method we presented a comparative error and stability analysis.
In order to examine the behavior of the vanishing of the phase-lag and its first and

2 With the term classical we mean the method of Sect. 3 with constant coefficients
3 The reference values are computed using the well known two-step method of Chawla and Rao [28] with
small step size for the integration
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Fig. 4 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (Digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

second derivative on the efficiency of the new produced method we have applied it
to the numerical solution of the one-dimensional Schrödinger equation and related
problems.

From the results presented above, we can make the following remarks:

1. The classical form of the tenth algebraic order four-step multiderivative method
developed in Sect. 3, which is indicated as Method NMCL is more efficient than
the fourth algebraic order method of Chawla and Rao with minimal phase-lag [29],
which is indicated as Method MCR4. Both the above mentioned methods are more
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Fig. 5 Accuracy (digits) for several values of C PU Time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

efficient than the exponentially-fitted method of Raptis and Allison [85], which is
indicated as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[16], which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [29], which is indicated
as Method MCR4. The Method QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [16], which is indicated as
Method QT8. Finally, the Method QT10 is more efficient than the hybrid sixth
algebraic order method developed by Chawla and Rao with minimal phase-lag
[28], which is indicated as Method MCR6 for large CPU time and less efficient
than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[16], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [16], which is indicated as
Method QT10
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4. The Phase-Fitted Method (Case 1) developed in [22], which is indicated as Method
NMPF1 is more efficient than the classical form of the fourth algebraic order
four-step method developed in Sect. 3, which is indicated as Method NMCL,
the exponentially-fitted method of Raptis and Allison [85] and the Phase-Fitted
Method (Case 2) developed in [22], which is indicated as Method NMPF2

5. The Four-Step Method with vanished phase-lag and its first derivative (Case 2)
developed in [50], which is indicated as Method NMC2 is more efficient than the
classical form of the fourth algebraic order four-step method developed in Sect. 3,
which is indicated as Method NMCL, the exponentially-fitted method of Raptis
and Allison [85] and the Phase-Fitted Method (Case 2) developed in [22], which
is indicated as Method NMPF2 and the Phase-Fitted Method (Case 1) developed
in [22], which is indicated as Method NMPF1

6. The Four-Step Method with vanished phase-lag and its first derivative (Case 1)
developed in [50], which is indicated as Method NMC2, is the most efficient one
than all the above mentioned methods.

7. The New Obtained Method developed in Sect. 3, which is indicated as Method
NMPFD12 is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

References

1. J.D. Lambert, Numerical Methods for Ordinary Differential Systems. The Initial Value Problem
(Wiley, New York, 1991)

2. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge-Kutta method for the numerical solution
of the Schrödinger equation. J. Math. Chem 30(1), 121–131 (2001)

3. K. Tselios, T.E. Simos, Runge-Kutta methods with minimal dispersion and dissipation for problems
arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

4. Z.A. Anastassi, T.E. Simos, An optimized Runge-Kutta method for the solution of orbital problems.
J. Comput. Appl. Math. 175(1), 1–9 (2005)

5. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge-Kutta-
Nyström methods. Int. J. Modern Phys. C 22(6), 623–634 (2011)

6. Dimitris F. Papadopoulos, T.E. Simos, A modified Runge-Kutta-Nyström method by using phase lag
properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

7. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge-Kutta-Nyström
methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

8. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge-Kutta method with increased
phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math.
Chem. 47(1), 315–330 (2010)

9. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge-Kutta-
Nyström methods for the numerical solution of the Schrödinger equation and related problems a
method of 8th algebraic order. J. Math. Chem 31(2), 211–232 (2002)

10. T.E. Simos, A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical
solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

11. T.E. Simos, Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial-
value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

12. Ch. Tsitouras, T.E. Simos, Optimized Runge-Kutta pairs for problems with oscillating solutions. J.
Comput. Appl. Math. 147(2), 397–409 (2002)

13. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the numerical solution
of the Schrödinger equation. J. Math. Chem 37(3), 281–293 (2005)

123



J Math Chem (2014) 52:833–855 851

14. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge-Kutta methods with exponential
order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem 41(1), 79–100
(2007)

15. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst.
Math. Appl. 18, 189–202 (1976)

16. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary
orbits. Astron. J. 100, 1694–1700 (1990)

17. J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30(1),
1–10 (1990)

18. E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)
19. T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial

Schrödinger equation. Comput. Chem. 21, 175–179 (1997)
20. Ch. Tsitouras, ITh Famelis, On modified Runge-Kutta trees and methods. Comput. Math. Appl. 62(4),

2101–2111 (2011)
21. http://www.burtleburtle.net/bob/math/multistep.html
22. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient inte-

gration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236,
3880–3889 (2012)

23. A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second
order initial-value problem. BIT 31, 160–168 (1991)

24. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for
the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math.
Comput. Chem. 60(3), 773–785 (2008)

25. T.E. Simos, P.S. Williams, A finite-difference method for the numerical solution of the Schrödinger
equation. J. Comput. Appl. Math. 79, 189–205 (1997)

26. R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)
27. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid

explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the
basic method. J. Math. Chem 29(4), 281–291 (2001)

28. M.M. Chawla, P.S. Rao, An explicit sixth - order method with phase-lag of order eight for y′′ =
f (t, y). J. Comput. Appl. Math. 17, 363–368 (1987)

29. M.M. Chawla, P.S. Rao, An Noumerov-type method with minimal phase-lag for the integration of
second order periodic initial-value problems II explicit method. J. Comput. Appl. Math. 15, 329–337
(1986)

30. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger
equation. J. Comput. Appl. Math. 79, 189–205 (1997)

31. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid
explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the
generator; optimization of the generator and numerical results. J. Math. Chem 29(4), 293–305 (2001)

32. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for
the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

33. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical
solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

34. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second
order IVPS with oscillating solutions. Numer. Algorithm. 34(1), 27–40 (2003)

35. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for
the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172
(2005)

36. Theodore E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of
the radial Schrödinger equation and related problems with respect to phase-lag. Central Eur. J. Phys.
9(6), 1518–1535 (2011)

37. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the
Schrödinger equation. J. Math. Chem 37(3), 317–331 (2005)

38. Hans Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for y′′ = f (x, y).
J. Comput. Appl. Math. 209(1), 33–53 (2007)

39. Hans Van de Vyver, An explicit Numerov-type method for second-order differential equations with
oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

123

http://www.burtleburtle.net/bob/math/multistep.html


852 J Math Chem (2014) 52:833–855

40. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J.
Math. Chem. 46(3), 981–1007 (2009)

41. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit
two-step p-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

42. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new symmetric eight-step predictor-corrector method
for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J.
Modern Phys. C 22(2), 133–153 (2011)

43. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor-corrector method for
the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions.
Comput. Phys. Commun. 182(8), 1626–1637 (2011)

44. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger
equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387, Volume
2012 (2012)

45. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical
solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

46. Ibraheem Alolyan, T.E. Simos, A new four-step Runge-Kutta type method with vanished phase-lag
and its first, second and third derivatives for the numerical solution of the Schrödinger equation. J.
Math. Chem. 51(5), 1418–1445 (2013)

47. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor-corrector
method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

48. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor-
corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron.
J. 145(3), 75 (2013). doi:10.1088/0004-6256/145/3/75

49. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and
its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and
theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

50. T.E. Simos, On the Explicit four-step methods with vanished phase-lag and its first derivative. Appl.
Math. Inf. Sci. 8(2), 447–458 (2014)

51. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor-corrector method
(EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713
(2014)

52. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation.
J. Math. Chem. 47(2), 871–890 (2010)

53. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger
equation. J. Math. Chem 34(1–2), 83–94 (2003)

54. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial
Shrodinger equation. J. Math. Chem 35(1), 55–63 (2004)

55. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic
integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem
42(3), 535–545 (2007)

56. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical
integration of the Schrödinger equation. J. Math. Chem 37(3), 263–270 (2005)

57. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted sym-
plectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem 40(3),
257–267 (2006)

58. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the
Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

59. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high-order for long-time inte-
gration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

60. Z. Kalogiratou, T.E. Simos, Newton-Cotes formulae for long-time integration. J. Comput. Appl. Math.
158(1), 75–82 (2003)

61. T.E. Simos, High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical
solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

62. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for the solution of the
Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

63. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae of high order for the numerical
integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

123

http://dx.doi.org/10.1088/0004-6256/145/3/75


J Math Chem (2014) 52:833–855 853

64. T.E. Simos, High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time inte-
gration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

65. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for numerical integration of the
Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

66. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of
orbital problems. RevMexAA 42(2), 167–177 (2006)

67. T.E. Simos, Closed Newton-Cotes trigonometrically-fitted formulae for long-time integration. Int. J.
Mod. Phys C 14(8), 1061–1074 (2003)

68. T.E. Simos, New closed Newton-Cotes type formulae as multilayer symplectic integrators. J. Chem.
Phys. 133(10), 104108 (2010)

69. T.E. Simos, New stable closed newton-cotes trigonometrically fitted formulae for long-time integra-
tion, abstract and applied analysis. Article Number: 182536 (2012). doi:10.1155/2012/182536.

70. T.E. Simos, High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as
multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math.
Chem 50(5), 1224–1261 (2012)

71. T.E. Simos, Accurately closed Newton-Cotes trigonometrically-fitted formulae for the numerical
solution of the Schrödinger equation. Int. J. Modern Phys. C 24(3), 1350014-1–1350014-20 (2013)

72. T.E. Simos, New open modified Newton Cotes type formulae as multilayer symplectic integrators.
Appl. Math. Model. 37(4), 1983–1991 (2013)

73. G.Vanden Berghe, M. Van Daele, Exponentially fitted open NewtonCotes differential methods as
multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

74. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted parti-
tioned Runge-Kutta method, international conference on numerical analysis and applied mathematics,
SEP 16–20, 2007 Corfu. GREECE Numer. Anal. Appl. Math. AIP Conf. Proc. 936, 313–317 (2007)

75. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometri-
cally fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys.
Commun. 177(10), 757–763 (2007)

76. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger
equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

77. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger
equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods.
Phys. Lett. A 372(5), 569–573 (2008)

78. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge-Kutta-Nyström methods for the
numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

79. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge-
Kutta methods. Int. J. Modern Phys. C 22(12), 1343–1355 (2011)

80. Kostas Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Revista
Mexicana de Astronomia y Astrofisica 49(1), 11–24 (2013)

81. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge-Kutta methods with min-
imal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

82. T.E. Simos, Jesus Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution
of the Schrödinger equation and related problems. Comput. Phys. Commun. 152, 274–294 (2003)

83. T. Lyche, Chebyshevian multistep methods for ordinary differential eqations. Num. Math. 19, 65–75
(1972)

84. L.Gr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation
in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

85. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger
equation. Comput. Phys. Commun. 14, 1–5 (1978)

86. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods
for the numerical solution of the Schrödinger equation. J. Math. Chem 32(3), 257–270 (2002)

87. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor-corrector methods for IVPs with oscil-
lating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

88. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme
for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

89. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating
solution. Appl. Math. Lett. 17(5), 601–607 (2004)

123

http://dx.doi.org/10.1155/2012/182536


854 J Math Chem (2014) 52:833–855

90. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger
equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

91. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods
for the numerical integration of the Schrödinger equation. J. Math. Chem 31(4), 371–404 (2002)

92. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the
Schrödinger equation and related problems. J. Math. Chem 34(1–2), 39–58 (2003)

93. T.E. Simos, Exponentially—fitted multiderivative methods for the numerical solution of the
Schrödinger equation. J. Math. Chem 36(1), 13–27 (2004)

94. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger
equation. J. Math. Chem 40(3), 305–318 (2006)

95. Hans Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration
of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

96. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the
Schrodinger equation. J. Math. Chem 44(2), 447–466 (2009)

97. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of
the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem 45(4), 1102–1129
(2009)

98. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor-corrector methods
for the numerical solution of the radial Schrödinger equation. J. Math. Chem 37(3), 295–316 (2005)

99. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigono-
metrically fitted family of seventh algebraic order Predictor-Corrector methods. J. Math. Chem 40(3),
269–293 (2006)

100. Zhongcheng Wang, P-stable linear symmetric multistep methods for periodic initial-value problems.
Comput. Phys. Commun. 171(3), 162–174 (2005)

101. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical
solution of the Schrödinger equation. J. Math. Chem 27(4), 343–356 (2000)

102. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of
the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129
(2009)

103. Chen Tang, Wenping Wang, Haiqing Yan, Zhanqing Chen, High-order predictor-corrector of expo-
nential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

104. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods
for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

105. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit
two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

106. S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order
infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

107. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum
mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

108. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches
for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput.
Chem. 63(2), 363–378 (2010)

109. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation.
Comput. Chem. 23, 513–554 (1999)

110. L.Gr Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the
Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

111. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial
Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

112. T.E. Simos, G. Psihoyios, Special issue: the international conference on computational methods in
sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165–165 (2006)

113. T.E. Simos, G. Psihoyios, Special issue—Selected papers of the International Conference on Compu-
tational Methods in Sciences and Engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September
2003 —Preface, J. Comput. Appl. Math. 175(1) IX–IX (2005)

114. T.E. Simos, J. Vigo-Aguiar, Special Issue—Selected Papers from the Conference on Computational
and Mathematical Methods for Science and Engineering (CMMSE-2002)—Alicante University,
Spain, 20–25 September 2002—Preface, J. Comput. Appl. Math. 158(1) IX–IX (2003)

123



J Math Chem (2014) 52:833–855 855

115. T.E. Simos, Ch. Tsitouras and I. Gutman, Preface for the Special Issue Numerical Methods in Chem-
istry, MATCH Commun. Math. Comput. Chem 60(3) (2008)

116. T.E. Simos, I. Gutman, Papers presented on the International Conference on Computational Methods
in Sciences and Engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math.
Comput. Chem 53(2), A3–A4 (2005)

117. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA
J. Numer. Anal. 7, 235–250 (1987)

118. J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6,
19–26 (1980)

119. T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), IX–IX (2005)
120. L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965)
121. I. Prigogine, S. Rice (eds.), Advances in Chemical Physics, Vol. 93: New Methods in Computational

Quantum Mechanics (Wiley, New York, 1997)
122. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand,Toronto, 1950)
123. L. Gr Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

123


	An explicit four-step method with vanished phase-lag and its first and second derivatives
	Abstract
	1 Introduction
	2 Analysis of the phase-lag for symmetric multistep methods
	3 The family of explicit four-step methods with vanished phase-lag and its first and second derivatives
	4 Comparative error analysis
	4.1 Classical method (i.e. the method (12) with constant coefficients)
	4.2 The method with vanished phase-lag produced in [26]
	4.3 The method with vanished phase-lag and its first derivative produced in [54]
	4.4 The method with vanished phase-lag and its first and second derivatives developed in Sect. 3
	4.5 Classical method
	4.6 The method with vanished phase-lag produced in [26]
	4.7 The method with vanished phase-lag and its first derivative produced in [54]
	4.8 The method with vanished phase-lag and its first and second derivatives developed in Sect. 3

	5 Stability analysis
	6 Numerical results
	6.1 Woods--Saxon potential
	6.2 Radial Schrödinger equation: the resonance problem

	7 Conclusions
	References


